$$(A,\delta )$$(A,δ)-modules, Hochschild homology and higher derivations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher derivations on rings and modules

Let τ be a hereditary torsion theory on ModR and suppose that Qτ : ModR → ModR is the localization functor. It is shown that for all R-modules M, every higher derivation defined on M can be extended uniquely to a higher derivation defined on Qτ(M) if and only if τ is a higher differential torsion theory. It is also shown that if τ is a TTF theory and Cτ : M →M is the colocalization functor, the...

متن کامل

Detecting Torsion in Skein Modules Using Hochschild Homology

Given a Heegaard splitting of a closed 3-manifold, the skein modules of the two handlebodies are modules over the skein algebra of their common boundary surface. The zeroth Hochschild homology of the skein algebra of a surface with coefficients in the tensor product of the skein modules of two handlebodies is interpreted as the skein module of the 3-manifold obtained by gluing the two handlebod...

متن کامل

Symplectic Homology as Hochschild Homology

In the wake of Donaldson’s pioneering work [6], Picard-Lefschetz theory has been extended from its original context in algebraic geometry to (a very large class of) symplectic manifolds. Informally speaking, one can view the theory as analogous to Kirby calculus: one of its basic insights is that one can give a (non-unique) presentation of a symplectic manifold, in terms of a symplectic hypersu...

متن کامل

Harrison Homology, Hochschild Homology and Triples*l

We consider the following situation: a field k, a commutative k-algebra R and a left R-module M. Since R is commutative, M may also be considered as an R-R bimodule with the same operation on each side (such modules are often termed symmetric). With these assumptions we have the Harrison (co-) homology groups Harr,(R, M) (Harr*(R, M)), the Hochschild (co-) homology groups Hoch, (R, M) (Hoch*(R,...

متن کامل

Extending Higher Derivations to Rings and Modules of Quotients

A torsion theory is called differential (higher differential) if a derivation (higher derivation) can be extended from any module to the module of quotients corresponding to the torsion theory. We study conditions equivalent to higher differentiability of a torsion theory. It is known that the Lambek, Goldie and any perfect torsion theories are differential. We show that these classes of torsio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata (1923 -)

سال: 2019

ISSN: 0373-3114,1618-1891

DOI: 10.1007/s10231-019-00844-x